fected, although many reagents were tried. In general, only 16 could be isolated from these attempted oxidations. However, it was possible to acetylate 13 to afford ester 14 (76%), which upon oxidation with NBS yield the aromatized acetate 15 (73\%). This compound could be cleanly hydrolyzed and methylated in one step to give eupolauramine (1) in 82% yield identical with an authentic sample. ${ }^{11}$

Acknowledgment. We thank The National Science Foundation for support of this research on Grant CHE81-00132.

Registry No. 1, 58856-98-7; 2, 74272-88-1; 3, 18742-02-4; 4, 84731-36-2; 5, 84731-37-3; 5 aldehyde, 84731-38-4; 6, 84731-39-5; 8, 84731-40-8; 9, 84731-41-9; 10, 84731-42-0; 11, 84731-43-1; 12, 84731-44-2; 13, 84731-45-3; 14, 84731-46-4; 15, 84731-47-5; 16, 84731-48-6; 17, 84731-49-7.

Supplementary Material Available: Listing of physical and spectral data for all new compounds (5 pages). Ordering information is given on any current masthead page.

Free-Radical Chain-Substitution Reactions of Alkylmercury Halides ${ }^{1}$

Glen A. Russell* and Hasan Tashtoush
Department of Chemistry, Iowa State University
Ames, Iowa 50011
Received October 4, 1982
We have previously reported that organomercury halides will participate in free-radical chain-reactions 1-3. ${ }^{2.3}$ Although alkyl

$$
\begin{equation*}
(\text { alkyl }) \mathrm{HgX}+\mathrm{R}_{2} \mathrm{C}=\mathrm{NO}_{2}^{-} \rightarrow(\text { alkyl }) \mathrm{C}(\mathrm{R})_{2} \mathrm{NO}_{2}+\mathrm{Hg}^{0}+\mathrm{X}^{-} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{RCH}=\mathrm{CHHgX}+\mathrm{Q}^{-} \rightarrow \mathrm{RCH}=\mathrm{CHQ}+\mathrm{Hg}^{0}+\mathrm{X}^{-} \tag{2}
\end{equation*}
$$

$$
\left(\mathrm{Q}^{-}=(\mathrm{RO})_{2} \mathrm{PO}^{-}, \mathrm{PhP}(\mathrm{OR}) \mathrm{O}^{-}, \mathrm{RSO}_{2}^{-}, \mathrm{RS}^{-}\right)
$$

$$
\begin{equation*}
\mathrm{RCH}=\mathrm{CHHgX}+\mathrm{QY} \rightarrow \mathrm{RCH}=\mathrm{CHQ}+\mathrm{XHgY} \tag{3}
\end{equation*}
$$

$$
\left(\mathrm{QY}=\mathrm{RSSR}, \mathrm{PhSeSePh}, \mathrm{PhTeTePh}, \mathrm{ArSO}_{2} \mathrm{Cl}\right)
$$

$$
\begin{equation*}
(\text { alkyl }) \mathrm{HgX}+\mathrm{QY} \rightarrow(\text { alkyl }) \mathrm{Y}+\mathrm{XHgQ} \tag{4}
\end{equation*}
$$

radicals are involved in reaction $1,{ }^{4}$ substitution in 1 -alkenylmercurials (reactions 2 and 3) does not involve alkenyl radicals since the reaction with $\mathrm{Q}^{-}=\mathrm{PhS}^{-}$or $\mathrm{QY}=\mathrm{PhSSPh}$ proceeds readily in the presence of PhSH to yield the alkenylphenyl sulfide and not the alkene. ${ }^{3.5}$ On the other hand the presently reported reaction 4, which also occurs by a free-radical chain mechanism, quite clearly does involve the alkyl free radical as an intermediate. ${ }^{6}$

Reaction of $\mathrm{QY}=\mathrm{PhSSPh}, \mathrm{PhSeSePh}, \mathrm{PhTeTePh}, p-$ $\mathrm{MePhSO}_{2} \mathrm{SePh}$, or $\mathrm{PhSO}_{2} \mathrm{Cl}$ with alkylmercurials ($\mathrm{RHgX}, \mathrm{R}=$ Δ^{5}-hexenyl, Δ^{3}-butenyl, n-hexyl, neopentyl, isopropyl, cyclohexyl, cyclopentylcarbinyl, 7-norbornyl), summarized in Table I, proceeds cleanly in the presence of free-radical chain initiation ($h \nu, 25-45$ ${ }^{\circ} \mathrm{C}$; AIBN, $80^{\circ} \mathrm{C}$) to yield RY. Reaction is not observed in the dark in PhH solution while the photostimulated reaction is inhibited by $10 \mathrm{~mol} \%$ of $\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{NO}$. In the case of the Δ^{5}-hexenyl

[^0]substituent, extensive cyclization occurs to yield the cyclopentylcarbinyl product. From the yields of uncyclized and cyclized products for Δ^{5}-hexenylmercury chloride, the rate constants for the $\mathrm{S}_{\mathrm{H}} 2$ attack of the Δ^{5}-hexenyl radical upon PhYYPh is calculated to be $7.6 \times 10^{4}(\mathrm{Y}=\mathrm{S}), 1.2 \times 10^{7}(\mathrm{Y}=\mathrm{Se})$, and 4.8 $\times 10^{7}(\mathrm{Y}=\mathrm{Te}) \mathrm{L} /(\mathrm{mol} \mathrm{s}) .{ }^{7}$ The Δ^{3}-butenylmercury chloride gives no cyclized products. ${ }^{8}$ Further evidence that the free alkyl radical is involved in reaction 4 is provided by the observation that $\mathrm{PhSO}_{2} \mathrm{Cl}$ yields RCl and no $\mathrm{PhSO}_{2} \mathrm{R}, p-\mathrm{MePhSO}_{2} \mathrm{SePh}$ yields only RSePh , and BrCCl_{3} yields 1 -bromohexane (56%) with n-hexylmercury chloride. ${ }^{9}$ These products are consistent with the mechanism given in eq $4 a-c$). ${ }^{10-12}$ The reaction does not occur
\[

$$
\begin{gather*}
\mathrm{Q} \cdot+\mathrm{RHgX} \rightarrow \mathrm{RHg}(\mathrm{Q}) \mathrm{X} \tag{4a}\\
1 \rightarrow \mathrm{R} \cdot+\mathrm{QHgX} \tag{4b}\\
\mathrm{R} \cdot+\mathrm{QY} \rightarrow \mathrm{RY}+\mathrm{Q} . \tag{4c}
\end{gather*}
$$
\]

for PhHgX or (cyclopropyl) HgX , presumably because of the high bond-dissociation energies for 1 in reaction 4 b . With Δ^{5}-hexenyl cyclization, the second-order rate constants for attack of the Δ^{5}-hexenyl radical on $\mathrm{PhSO}_{2} \mathrm{Cl}$ and $p-\mathrm{MePhSO}_{2} \mathrm{SePh}$ are found to be 3.7×10^{4} and $3.0 \times 10^{6} \mathrm{~L} /(\mathrm{mol} \mathrm{s}){ }^{7}$

A modification of reaction 4 involves the participation of PhSH , either alone or in the presence of PhSSPh (reaction 5). Now

$$
\begin{equation*}
\mathrm{RHgX}+\mathrm{PhSH} \xrightarrow{h \nu} \mathrm{RH}+\mathrm{XHgSPh} \tag{5}
\end{equation*}
$$

the alkyl radical can be trapped by PhSH to yield RH and PhS. ($=$ Q.), which continues the chain. Again, Δ^{5}-hexenyl gives some cyclized product (methylcyclopentane) from which the value of $\sim 8 \times 10^{7} \mathrm{~L} /(\mathrm{mol} \mathrm{s})$ can be calculated for the hydrogen abstraction reaction of Δ^{5}-hexenyl radical with $\mathrm{PhSH}{ }^{13}$
It is interesting to speculate if the observed α attack of radicals Q. upon 1-alkenylmercurials ${ }^{3}$ invovles $\mathbf{1}^{\prime}$ as an interemdiate (eq 3a-d). Such an explanation is quite consistent with the obser-

$$
\begin{gather*}
\mathrm{RCH}=\mathrm{CHHgCl}+\mathrm{Q} \cdot \rightarrow \mathrm{RCH}=\mathrm{CHHgQCl}_{1^{\prime}} \tag{3a}\\
\mathbf{1}^{\prime} \rightarrow \mathrm{R} \dot{\mathrm{C}} \mathrm{HCHQHgCl} \tag{3b}\\
\mathrm{RC} \mathrm{HCHQHgCl} \rightarrow \mathrm{RCH}=\mathrm{CHQ}+\mathrm{HgCl} \tag{3c}\\
\mathrm{HgCl}+\mathrm{QY} \rightarrow \mathrm{Q} \cdot+\mathrm{YHgCl} \tag{3d}
\end{gather*}
$$

vation that an unsymmetrical reagent QY such as $\mathrm{PhSO}_{2} \mathrm{Cl}$ yields only the sulfone (RQ) in reaction 3 but only the alkyl chloride (RY) in reaction 4.

The reactions of benzylmercurials took a somewhat different course than the reactions of primary alkylmercurials in that significant yields of bibenzyl were often observed. Furthermore, the bibenzyl must be formed by a chain process since $5-10 \mathrm{~mol}$ $\%$ of $\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{NO}$. inhibited these reactions for extended periods of time. Photostimulated reaction of $\mathrm{PhCH}_{2} \mathrm{HgCl}$ with 1 equiv

[^1]Table I. Photostimulated Reaction, $\mathrm{RHgCl}+\mathrm{QY} \rightarrow \mathrm{RY}+\mathrm{ClHgQ}$

R	Q-Y	conditions ${ }^{\text {a }}$	RY, \% ${ }^{\text {b }}$
$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}$	PhS-SPh	PhH, 4 h	92
$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}$	PhS-SPh	PhH, dark, 6.5 h, $50^{\circ} \mathrm{C}$	0
$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}$	PhS-SPh	$\mathrm{PhH}, 4 \mathrm{~h}, 10 \mathrm{~mol}$ $\%\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{NO}$.	0
$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}$	PhS-SPh	$\begin{aligned} & \mathrm{PhH}, \mathrm{AIBN}, 10 \mathrm{~h}, \\ & 80^{\circ} \mathrm{C} \end{aligned}$	64^{c}
$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}$	PhSe-SePh	PhH, 5 h	85
$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}$	PhTe-TePh	PhH, 3 h	92
$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}$	$\begin{gathered} p-\mathrm{MePhSO}_{2}- \\ \mathrm{SePh} \end{gathered}$	$\mathrm{PhH}, 4 \mathrm{~h}$	87
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2}$	PhS-SPh	PhH, 3 h	78
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2}$	PhSe-SePh	$\mathrm{PhH}, 4 \mathrm{~h}$	82
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2}$	PhTe-TePh	PhH, 4 h	83
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2}$	$\begin{gathered} p-\mathrm{MePhSO}_{2}- \\ \mathrm{SePh} \end{gathered}$	$\mathrm{PhH}, 5 \mathrm{~h}$	82
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2}$	$\mathrm{PhSO}_{2}-\mathrm{Cl}$	$\mathrm{PhH}, 48 \mathrm{~h}{ }^{\text {d }}$	46
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2}$	$\mathrm{CCl}_{3}-\mathrm{Br}$	$\mathrm{PhH}, 36 \mathrm{~h}$	56
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2}$	$\mathrm{PhS}-\mathrm{SPh}$	$\mathrm{PhH}, 12 \mathrm{~h}$	74
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2}$	$\mathrm{PhSe-SePh}$	PhH, 5 h	86
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2}$	$\mathrm{PhTe}-\mathrm{TePh}$	PhH, 6 h	78
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2}$	$\begin{gathered} p-\mathrm{MePhSO}_{2}- \\ \mathrm{SePh} \end{gathered}$	$\mathrm{PhH}, 10 \mathrm{~h}$	75
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$	PhS-SPh	PhH, 4 h	100
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$	$\mathrm{PhSe-SePh}$	$\mathrm{PhH}, 5 \mathrm{~h}$	100
cyclo- $\mathrm{C}_{6} \mathrm{H}_{11}$	PhS-SPh	$\mathrm{Me}_{2} \mathrm{SO}, 18 \mathrm{~h}$	65^{c}
cyclo- $\mathrm{C}_{6} \mathrm{H}_{11}$	PhSe-SePh	$\mathrm{Me}_{2} \mathrm{SO}, 16 \mathrm{~h}$	$72^{\text {c }}$
cyclo- $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{CH}_{2}$	$\mathrm{PhS}-\mathrm{SPh}$	PhH, 4 h	$86\left(73^{c}\right)$
cy clo-C5 $\mathrm{H}_{9} \mathrm{CH}_{2}$	$\mathrm{PhSe}-\mathrm{SePh}$	PhH, 4 h	84
7 -norbornyl	$\mathrm{PhS}-\mathrm{SPh}$	PhH, 6 h	43^{e}
7 -norbornyl	$\mathrm{PhSe}-\mathrm{SePh}$	$\mathrm{PhH}, 4 \mathrm{~h}$	53^{e}
7 -norbornyl	$\mathrm{PhTe-TePh}$	$\mathrm{PhH}, 10 \mathrm{~h}$	45^{e}
7 -norbornyl	$\begin{gathered} p-\mathrm{MePhSO}_{2}- \\ \mathrm{SePh} \end{gathered}$	$\mathrm{PhH}, 10 \mathrm{~h}$	48^{e}
$\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}$	$\mathrm{PhS}-\mathrm{S}-\mathrm{Ph}$	PhH, 3 h	88^{f}
$\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}$	$\mathrm{PhSe-SePh}$	$\mathrm{PhH}, 3 \mathrm{~h}$	$93{ }^{f}$
$\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}$	$\mathrm{PhTe-TePh}$	PhH, 8 h	85^{\prime}
$\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}$	$\begin{gathered} p-\mathrm{MePhSO}_{2}- \\ \mathrm{SePh} \end{gathered}$	PhH, 6 h	81^{f}
$\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}$	$\mathrm{PhSO}_{2}-\mathrm{Cl}$	PhH, $48 \mathrm{~h}^{\text {d }}$	$54{ }^{f}$
$\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}$	PhS-H	$\mathrm{PhH}, 5 \mathrm{~h}$	58^{f}
$\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}$	PhS-H	PhH, dark, 10 mol $\%\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{NO} \cdot$ $30^{\circ} \mathrm{C}, 38 \mathrm{~h}$	0
PhCH_{2}	PhS-SPh	$\mathrm{PhH}, 4 \mathrm{~h}^{\text {d }}$	15 (668)
PhCH_{2}	$\mathrm{PhSe-SePh}$	PhH, 2 h	$72\left(7^{8}\right)$
PhCH_{2}	$\mathrm{PhTe}-\mathrm{TePh}$	PhH, 1 h	$80\left(0^{g}\right)$
PhCH_{2}	$\underset{\mathrm{SePh}}{\mathrm{p}-\mathrm{MePhSO}_{2}-}$	$\mathrm{PhH}, 6 \mathrm{~h}$	68 (58)
$\mathrm{PhCH}_{2}{ }^{h}$	PhS-SPh	$\mathrm{PhH}, 6 \mathrm{~h}^{\text {d }}$	$8\left(72^{g}\right)$
$\mathrm{PhCH}_{2}{ }^{h}$	PhTe-TePh	PhH, 1 h	$100\left(0^{\text {g }}\right.$)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{h}$	$\mathrm{PhS}-\mathrm{SPh}$	PhH, 2.5 h	100
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{i}$	PhS-SPh	PhH, 21 h	85

[^2]of PhSSPh yielded mainly $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$ and PhSHgCl while the better radical traps PhSeSePh or PhTeTePh led mainly to $\mathrm{PhCH}_{2} \mathrm{SePh}$ and exclusively to $\mathrm{PhCH}_{2} \mathrm{TePh}$ (Table I). Dibenzylmercury undergoes a facile photostimulated decomposition (inhibited by $\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{NO} \cdot$) to $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$ and Hg^{0} while $\mathrm{PhCH}_{2} \mathrm{HgSPh}$ undergoes a photostimulated chain decomposition yielding $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{Ph},(\mathrm{PhS})_{2} \mathrm{Hg}$, and Hg^{0}. Benzylmercury chloride does not readily undergo a chain decomposition, but in the presence of anions (A^{-}), which promote the symmetrization to $\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{Hg}$ and $\mathrm{HgCl}_{2}-\mathrm{A}^{-}\left(\mathrm{A}^{-}=(\mathrm{EtO})_{2} \mathrm{PO}^{-}, \mathrm{ArSO}_{2}^{-}, \mathrm{NO}_{2}^{-}\right)$,
photostimulated decomposition occurs. ${ }^{4}$ Bibenzyl could be formed in these processes by the $\mathrm{S}_{\mathrm{H}} 2$ attack of benzyl radical at the benzyl carbon of the mercurial or by decomposition of the Hg^{111} intermediate $\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{HgQ}, 1^{\prime \prime}\left(\mathrm{Q}=\mathrm{PhCH}_{2}, \mathrm{Cl}, \mathrm{SPh}, \mathrm{SePh}, \mathrm{TePh}\right)$. To distinguish between these alternatives, we have studied the chain reactions between $\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{Hg}$ and $\mathrm{PhYYPh}(\mathrm{Y}=\mathrm{S}, \mathrm{Te})$ in which addition of PhY - to $\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{Hg}$ would produce $1^{\prime \prime}$ with $\mathrm{Q}=\mathrm{PhS}$ or PhTe . Reaction of 2 equiv of PhTeTePh with $\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{Hg}$ proceeded rapidly when photostimulated to yield quantitatively $\mathrm{PhCH}_{2} \mathrm{TePh}$ and $(\mathrm{PhTe})_{2} \mathrm{Hg}$. We conclude that decomposition of $\mathbf{1}^{\prime \prime}(\mathrm{Q}=\mathrm{PhTe}$) leads to the benzyl radical and not directly to bibenzyl. With PhSSPh (2 equiv), a poorer trap for $\mathrm{PhCH}_{2} \cdot$ than PhTeTePh , the major reaction product was $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$ (Table I). We thus conclude that bibenzyl is formed by attack of $\mathrm{PhCH}_{2} \cdot$ at the benzyl position of a carbonmercury bond with $k_{6}>k_{7}$ for $\mathrm{Y}=\mathrm{S}$ but $k_{7}>k_{6}$ for $\mathrm{Y}=\mathrm{Te}$ (Scheme I).

Scheme I

$$
\begin{gather*}
\mathrm{PhCH}_{2^{+}}+\mathrm{PhCH}_{2} \mathrm{HgQ} \xrightarrow{\mathrm{~S}_{\mathrm{H}^{2}}} \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}+\mathrm{HgQ} \tag{6}\\
\mathrm{PhCH}_{2}+\mathrm{PhYYPh} \rightarrow \mathrm{PhCH}_{2} \mathrm{YPh}+\mathrm{PhY} . \tag{7}\\
\mathrm{HgQ}\left(\mathrm{Q}=\mathrm{PhCH}_{2}, \mathrm{PhY}\right) \rightarrow \mathrm{Hg}^{0}+\mathrm{Q} \cdot \tag{8}\\
\mathrm{HgQ}+\mathrm{PhYYPh} \rightarrow \mathrm{PhYHgQ}+\mathrm{PhY} . \tag{9}\\
\mathrm{PhY} \cdot+\mathrm{PhCH}_{2} \mathrm{HgQ} \rightarrow \mathrm{PhCH}_{2} \mathrm{HgQYPh} \tag{10}\\
\mathrm{PhCH}_{2} \mathrm{HgQYPh}_{\mathrm{Ph}} \rightarrow \mathrm{PhCH}_{2} \cdot+\mathrm{PhYHgQ} \tag{11}\\
\mathrm{Q}=\mathrm{PhCH}_{2}, \mathrm{Cl}, \mathrm{PhY}(\mathrm{Y}=\mathrm{S}, \mathrm{Se}, \mathrm{Te})
\end{gather*}
$$

Acknowledgment. Samples of cyclopropyl- and 7-norbornylmercury bromide were kindly supplied by Professor B. Giese. ${ }^{11}$
Registry No. $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{HgCl}, 14660-38-9 ; \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{C}$ $\mathrm{H}_{2} \mathrm{HgCl}, 17774-09-3 ;\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{HgCl}, 10284-47-6 ;\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHHgCl}$, 30615-19-1; $\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{HgCl}, 24371-94-6 ; \mathrm{c}-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{CH}_{2} \mathrm{HgCl}, 33631-66-2$; 7-norborrnyl $\mathrm{HgCl}, 84649-28-5 ; \mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2} \mathrm{HgCl}, 63668$-133; $\mathrm{PhCH}_{2} \mathrm{HgCl}, 2117-39-7$; PhSSPh, 882-33-7; PhSeSePh, 1666-13-3; PhTeTePh, 32294-60-3; p - $\mathrm{MePhSO}_{2} \mathrm{SePh}^{2} 68819-94-3 ; \mathrm{PhSO}_{2} \mathrm{Cl}$, $98-$ 09-9.
(14) $\mathrm{S}_{\mathrm{H}^{2}}$ attack of $\mathrm{PhY} \cdot$ at the carbon of $\mathrm{PhCH}_{2} \mathrm{HgQ}$ or decomposition of $\mathrm{PhCH}_{2} \mathrm{HgQYPh}$ directly to $\mathrm{PhCH}_{2} \mathrm{HgQYPH}$ are discounted because of the cyclization observed in the reactions of Δ^{3}-hexenylmercurials.

Iron Porphyrin Dependent Oxidation of Methyl- and Phenylhydrazine: Isolation of Iron(II)-Diazene and σ-Alkyliron(III) (or Aryliron(III)) Complexes. Relevance to the Reactions of Hemoproteins with Hydrazines

P. Battioni, J. P. Mahy, G. Gillet, and D. Mansuy*

Laboratoire de Chimie de l'Ecole Normale Supērieure Associë au CNRS, 75231 Paris Cedex 05, France

Received July 19, 1982
Monosubstituted hydrazines, particularly arylhydrazines, have been shown to react with several hemoproteins such as hemoglobin ${ }^{1}$ (Hb), myoglobin ${ }^{2}(\mathrm{Mb})$, cytochrome P-450, ${ }^{3}$ lactoperoxidase, ${ }^{4}$ and horseradish peroxidase, ${ }^{5}$ forming heme adducts and producing a partial inhibition or destruction of these hemoproteins. ${ }^{6}$ The

[^3]
[^0]: (1) Supported by Grant CHE-8119343 from the National Science Foundation and a scholarship to H. T. from Yarmouk University, Irbid, Jordan.
 (2) Russell, G. A.; Hershberger, J.; Owens, K. J. Am. Chem. Soc. 1979, 101, 1312.
 (3) Russell, G. A.; Hershberger, J. J. Am. Chem. Soc. 1980, 102, 7603.
 (4) Russell, G. A.; Hershberger, J.; Owens, K. J. Organomet. Chem. 1982, 225, 43.
 (5) The phenyl radical abstracts hydrogen from PhSH at an essentially diffusion-controlled rate (Kryger, R. G.; Lorand, J. P.; Stevens, N. R.; Herron, N. R.J. Am. Chem. Soc. 1977, 99, 7589) while a primary alkyl radical abstracts hydrogen from $\mathrm{PhSH} \sim 20$ times as readily as $\mathrm{S}_{\mathrm{H}} 2$ attack on PhSSPh and has essentially no reactivity toward PhS^{-}(unpublished results with J. Tanko).
 (6) The thermal reaction of PhSeSePh and PhTeTePh with dialkylmercurials has been reported without mechanistic interpretation: Okamoto, Y.; Yano, T. J. Organomet. Chem. 1971, 29, 99.

[^1]: (7) Based on a unimolecular cyclization rate constant of $1 \times 10^{5} \mathrm{~s}^{-1}$ for the Δ^{5}-hexenyl radical (Griller, D.; Ingold, K. U. Acc. Chem. Res. 1980, 13 , 317).
 (8) Free-radical reactions leading to cyclopropylcarbinyl products have been reported for homoallylcobalt compounds: Asheroft, M. R.; Bury, A.; Cooksey, C. J.; Davies, A. G.; Gupta, B. D.; Johnson, M. D.; Morris, H. J. Organomet. Chem. 1980, 195, 89.
 (9) n-Alkylmercury chlorides or $(n-\mathrm{Bu})_{2} \mathrm{Hg}$ react with CCl_{3}. to give alkyl radicals with little involvement of the elimination reaction observed for certain dialkylmercurials by Nugent and Kochi: Nugent, W. A.; Kochi, J. K. J. Organomet. Chem. 1977, 124, 327.
 (10) The $\mathrm{S}_{\mathrm{H}} 2$ reaction, $\mathrm{R} \cdot+\mathrm{PhSHgR}{ }^{\prime} \rightarrow \mathrm{PhSR}+\mathrm{HgR}^{\prime}$, has been observed for $\mathrm{R}=\mathrm{i}-\mathrm{Pr}, \mathrm{R}^{\prime}=\mathrm{Ph}$ and for $\mathrm{R}=\mathrm{R}^{\prime}=n-\mathrm{Bu}$. However, PhSSPh is much more reactive than PhSHgBu and undoubtedly more reactive than PhSHgCl in this process.
 (11) The reaction of RHgX with polyhaloalkanes in the presence of NaBH_{4} to yield RCl or RBr apparently involves the reaction sequence $4 \mathrm{a}-\mathrm{c}$ among other processes: Giese, B. Angew. Chem., Int. Ed. Engl. 1976, 15, 173, 174.
 (12) Racemization of chiral organomercurials by a free-radical chain quite likely proceeds by reactions $4 \mathrm{a}, \mathrm{b}$; for pertinent references see: Jensen, F. R.; Rickborn, B. "Electrophilic Substitution of Organomercurials"; McGraw-Hill: New York, 1968.
 (13) Electrophilic cleavage of the Δ^{5}-hexenyl moiety by PhSH is discounted because of the total inhibition of the reaction by $\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{NO} \cdot$ (Table I).

[^2]: ${ }^{a}$ In a typical experiment RHgCl (1 mimol) and QY (1.2 mmol) in 10 mL of solvent were irradiated with a $275-\mathrm{W}$ sunlamp approximately 15 cm from the Pyrex reaction flask. The reaction temperature was $\sim \sim^{\circ}{ }^{\circ} \mathrm{C}$. ${ }^{b}{ }^{1} \mathrm{H}$ NMR yield. ${ }^{c}$ Isolated yield ($5-\mathrm{mmol}$ scale). ${ }^{d}$ Irradiated in a Rayonet reactor (350 nm). ${ }^{e} \mathrm{RHgBr}$ reactant. A significant amount of RR was recovered. f Mixture of $\mathrm{R}=\Delta^{5}$-hexenyl and cyclopenty lcarbinyl whose ratio (GLPC) was dependent on the concentration of QY. ${ }^{8}$ Yield of $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{Ph} .{ }^{h} \mathrm{RHgX}=\mathrm{R}_{2} \mathrm{Hg}(1 \mathrm{mmol})$; $\mathrm{QY}(2 \mathrm{mmol})$.
 ${ }^{i} \mathrm{Bu}_{2} \mathrm{Hg}(1 \mathrm{mmol})$ and $\mathrm{PhSSPh}(1.2 \mathrm{mmol})$ yielded 1.7 mmol of PhSBu .

[^3]: (1) Itano, H. A.; Matteson, J. L. Biochemistry 1982, 21, 2421-2426 and references cited therein.
 (2) Itano, H. A.; Robinson, E. A. J. Am. Chem. Soc. 1961, 83, 3339-3340.
 (3) Jonen, H. G.; Werringloer, J.; Prough, R. A.; Estabrook, R. W. J. Biol. Chem. 1982, 257, 4404-4411.
 (4) Allison, W. S.; Swain, L. C.; Tracy, S. M.; Benitez, L. V. Arch. Biochem. Biophys. 1973, 155, 400-404.
 (5) Hidaka, H.; Udenfriend, S. Arch. Biochem. Biophys. 1970, 140 , 174-180.

